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I. Introduction

This progress report summarizes the results of our research in

diagnostic ultrasound conducted during August 1974 - January 1975.

The major items to which the report will be addressed are:

A. Based on state of the art Doppler ultrasound instrumentation,

a transcutaneous method to measure instantaneous mean blood flow in

peripheral arteries of man is defined. Problems toward which further

research will be directed prior to construction of the final instrumen-

tation package are discussed.

B. A detailed evaluation of transcutaneous and implanted cuff

ultrasound velocity measurements was completed. Using our conventional

narrow gate scan with the PUDVM the accuracies of velocity, flow, and

diameter measurements were assessed for steady flow in rigid tubes,

bovine carotid segments, dialysis tubing, and for pulsatile flow, in

anesthetized dogs.

C. The analysis of the backscattered power was undertaken to

determine the accuracy of transmural diameter measurements by the half

power method.

D. The wide gate-full illumination method of measuring instantaneous

mean velocity was assessed in steady flow for the dialysis tube and for

pulsatile flow in the dog.

E. The performance criteria of the PUDVM were described. A

spectrum analyzer and FFT digital program were used to examine the

spectral characteristics of the Doppler signals as a function of

Reynold's number.

F. The performance of the NASA-PUDVM was assessed.

G. A standard transducer test system was designed and evaluated.

pRECEDTNG PAGE BLANK NOT FILMEI
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H. Ultrasound dosimetry procedures were investigated.

I. Spectral analysis of the PUDVM signals was performed

using a sonogram.
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II. Volume Flow Measurement Technique

The primary objective of this research project is the definition

and preliminary evaluation of a transcutaneous method for the measurement

of instantaneous mean flow in the peripheral arteries of an animal

or human. The effort is directed toward the eventual development of

ultrasound instrumentation that can be easily applied for the quantitative

measurement of flow in a subcutaneous vessel. State of the art

instrumentation is used. With an emphasis for the method based on

ease of application and accuracy, we have examined the various possibilities

using state of the art Doppler instrumentation to accomplish this goal.

The theoretical analysis of resolution, methodology, and three methods

for volume flow measurement were described in the progress report

submitted in July, 1974. Based upon this report and further developmental

studies both in simulated blood flow systems (steady flow in dialysis tubes)

and in special animal preparations (chronic implantation of flow cuffs),

we have defined a method based upon current state of the art instrumen-

tation for the measurement of mean flow.

A. Uniform illumination method

Mean instanteous flow will be computed from the product of the

mean instantaneous velocity obtained from the first moment of the Doppler

power spectrum from a wide gate encompassing the entire vessel diameter

and the cross-sectional area obtained from a half power diameter

measurement. The method will combine the measurement of instantaneous

mean velocity using a piezoelectric crystal larger than the vessel

diameter which will uniformly illuminate the cross-section of the

vessel at a specific location with a PUDVM gate opened to enclose the

near wall and far wall. Coupled with this measurement the geometry
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of the vessel will be obtained from a small crystal, narrow gate PUDVM

scan to obtain the half power points and thus the vessel diameter.

We ultimately envision a digital display of the computed flow.

An important facet of the method is the design of a transducer

which can be easily positioned on the skin for Doppler angle determination

and velocity measurement. Our preliminary design is shown in Figure 1.

Rectangular piezoelectric crystals will be placed at (1), (2), (3), (4),

(5) permitting angle determinations at a variety of depths (shown). By

rotating the transducer about its axis and using e.g. crystal (1) as

a transmitter and crystal (2) as a receiver the returned signal can be

nulled and thus the normal to the flow axis determined. In the dialysis

flow system the accuracy is ± .50. The design of the holder will be

based upon the movable protractor designs we have developed for trans-

cutaneous narrow gate scans. The transducer will be positioned by

audio recognition of the signal.

We have carefully examined the wide gate method for determining

mean velocity and are convinced the accuracy is high for Reynolds

numbers above 1500. Further study of flow in the laminar region

(parabolic profiles) is to be conducted. See Section IV. In addition,

the power scan method (Section III) has proven to be an effective

means for measuring diameter on the dialysis tube although we have

problems resolving the far wall in the animal. Since some discrepancies

exist in measuring diameter by the half power method we will devote a

major effort to perfect this method. Low pass filtering will be tried

as an alternative to locate the walls.
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III. Implant and Transcutaneous Velocity and Flow Comparisons

Detailed tests have been conducted on dialysis, rigid tube, and

bovine carotid arterial simulation systems. In these systems the

conventional narrow gate scan method that has been utilized in our

laboratory for the last two years was carefully evaluated. Although

errors exist in volume flow calculation by the narrow gate method,

this method can serve as a means of evaluating the correlation between

transcutaneous flow measurements and those made with a cuff implanted

on the vessel. Since we are seeking an accurate and simple method

to measure mean flow, we have not assessed corrections for boundary

errors and truncation as discussed in the previous report. We plan

to look at these errors during 1975.

A. Narrow gate fluid system experiments

Narrow gate scan flow measurements were taken in three types

of vessels: rigid tube, bovine graft, and dialysis tubing. Data

presented in Tables 1 and 2 were taken only under the following

instrument settings and experimental procedures.

Instrument Setting

PUDVM #2

PW 8 ,cycles

PR 2 (nominally 20 kc)

Gate 1 psec

Transducer #116 2.8 mm crystal

All data was recorded on magnetic tape, digitized and processed

by the digital computer. Since the flow system was steady (nonpulsatile),

the peak and average values were similar. The average values were compared

to collection measurements for the rigid tube and bovine graft systems.
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TABLE 1

Flowrate Measured (Q ) vs. Flowrate PUDVM (QpD)

Type Vessel Dimensions Re Qm cc/sec Qpcc/sec Avg. .% Error

Rigid Tube 11.rmm ID 740 6.50 3.51 -45

Ple a" 13.0mm OD 800 7.00 3.88 --44

crystal/ID ratio .255 1030 9.00 5.71 - 37

1150 10.00 6.80 -32

1320 11.50 7.42 8.09 - 30
8.68
7.84
8.42

1490 13.00 11.85 -8

1600 14.65 13.47 13.06 - 10
12.65

1830 16.00 12.79 15.36 - 4
17.92

2290 20.00 19.05 - 5

2600 22.70 25.68 24.34 + 7
22.99

2860 25.00 23.14 - 7

3040 26.20 25.62 25.07 - 4
24.52

3600 31.40 33.56 + 7

5200 45.80 41.67 42.88 - 6
44.09

7500 65.40 82.23 80.84 4- 27
79.46

Bovine Graft 7.7mm ID 2500 15.00 14.77 14.82 - 1
14.88

10.0mm OD
5000 30.00 32.55 32.38 4- 8

crystal/ID ratio .365 33.31
33.05
30.63

5800 35.00 29.95 - 12
31.37 30.66
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TABLE 2

Type Vessel Dimensions Re Om cc/sec ppn cc/sec Av.

Dialysis Tubing 6.3 mm ID 1000 4.73 3.38 3.53 - 34

crystal/ID ratio .455 3.68
1500 7.10 4.68 4.62 - 35

4.56

2000 9.46 7.08 7.32 - 23
7.66

2500 11.83 8.52 8.77 - 25
9.02

3000 14.19 13.32 13.66 - 4
14.00

3500 16.56 13.77 14.52 - 12
15.26

4000 18.92 14.82 15.46 - 18
16.10

4500 21.30 16.91 17.39 - 16
17.86

5000 23.60 17.16 18.36 - 22
19.55

7.2 mm ID 1000 5.65 3.42 3.57 - 37

crystal/ID ratio .390 3.72
1500 8.48 6.12 6.16 - 27

5.48
8.48 6.30

6.37
8.48 6.14

6.53

2000 11.30 7.82 8.07 - 28
8.33

2500 14.13 10.05 11.10 - 21
12.15

3000 16.80 15.76 16.14 - 4
15.98

16.80 16.02
16.80

3500 19.80 18.00 18.35 - 7
18.70

4000 22.60 20.95 20.97 - 7
20.98

4500 25.40 22.34 22.51 - 11
22.88 ;

5000 28.35 23.34 23.80 * 16
24.25
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A rotometer (± 5% calibration to collection) was used as a standard

during the dialysis tube study. The comparisons would help determine

the ability of the narrow gate scan and developed velocity profile

integration technique for flow rate determination.

Results from the tables suggest the following:

a. Standard and Doppler flow rates compare optimally only within

certain observed Reynolds number values for each vessel type.

Re 1500-5000 rigid tube

Re 3000-4500 7.2 dialysis tubing

Re 3000-4500 6.3 dialysis tubing

Re 25oo-5000 Bovine graft

b. As the tubing diameter increases (crystal diameter/ID ratio

decreases) flow rates obtained from the PUDVM approach the standard

values; within 10%.

c. Flow rates determined by the PUDVM for flow regimes of

relatively low Re value (<2000) greatly differ from collection or

rotometer values.

B. Narrow gate comparisons of velocity and flow in the dog

We have conducted extensive tests to compare the measured velocity

and flow parameters obtained on subcutaneous arteries using implanted

Doppler ultrasonic cuffs and transcutaneous probes. The dog was

surgically implanted with ultrasonic cuffs on the right and left femoral

arteries, the abdominal aorta, and the carotid artery. The carotid

artery was surgically exteriorized for ease of transcutaneous recording.

Post mortum exam will indicate whether the artery under these circum-

stances is straight and uniform. Generally, we find that the trans-

cutaneous and cuff narrow gate velocity and flow scans compare favorably

when the Doppler angle is obtained accurately. Table 3 summarizes the
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TABLE 3

Narrow gate measurements of diameter, flow and velocity

transcutaneous and cuff

NASA DOG 15689

XCUT vs. CUFF

Right Carotid

NUMBER OF
TYPE SAMPLES DIA mm

Diameter Xcut N=7 4.18+.03 All H.R.
(mm) Cuff N=ll 4.20+.10

Average Flow
(cm3s 1) Xcut N=4 2.62+.02 102<HR<128

Cuff N=5 2.58+.10102<HR<128
Cuff N=5 2.96±.09 128<HR<137
Xcut N=2 2.37+.00 141<HR<143

PEAK Xcut N=4 112.5±10.1
V Cuff N=5 107.8+ 7.2}  102<HR<128
(cms- ) Cuff N=6 75.1±22.3 128<HR<137

Xcut N=5 91.1+10.7 141<HR<143

Notes: PD #2 Cuff ID 5.0 mm crystal 2.5 mm
PW 8 Xcut Xducer crystal 2.8 mm
PRF 2,3 All data taken during anesthetic
Gate 1 psec RMS reading 0.15 V

For delays of 1 usec or .5 psec the data is similar
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results of the experiments with the animal. We will concentrate on

measurements from the right carotid artery although recordings from

the abdominal and femoral arteries confirm what we have found on this

particular artery. For heart rates in the range of 100 to 130 the

centerline peak velocity measured with the PUDVM for the transcutaneous

and the implanted cuff compares within the first standard deviation.

Normally, the centerline peak velocities are approximately 100 cm/sec

and we see for averages of approximately 5 experiments that the transcu-

taneous value was 112 and the value measured with the implanted

cuff at a location 1cm proximal to the transcutaneous measurements

location was 107 cm/second. As the,heart rate increases there is

greater variability both in the waveforms and the resulting velocity

values for cuff and the transcutaneous method. By integrating the

velocity profiles, one can obtain the average flow, and again for

a heart rate of 100 to 130 per second the average flow for the

transcutaneous was 2.62 and for the cuff 2.58 cm3/sec showing good

agreement between the two methods. For higher heart rates there is

more divergence in the measurements made with the two methods.

Finally, the diameters calculated from velocity profiles show very

close agreement for the transcutaneous and the implanted cuff. Diameters

at the specific locations were approximately 4.2 mm.

The purpose of these experiments was to compare the two methods.

We are not implying that thenarrow gate method is the most accurate

means of measuring diameter, flow or centerline peak velocity, However,

these studies do demonstrate the high degree of correlation between

transcutaneous measurements and implanted cuff measurements; necessary

criteria for supporting our contention that transcutaneous measurements
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of velocity and flow can be obtained with a high degree of accuracy.

Figures 2, 3, 4, show the velocity waveforms, velocity profiles,

and average flow waveforms from the implanted cuff on the carotid

artery. Figures 5, 6, 7 show comparable data obtained with a 2.8 mm

transcutaneous probe positioned 1 cm distal to the cuff.
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IV. Half Power Diameter Measurements

We propose that the geometry (diameter) of the blood vessel can

be accurately measured by a power scan with a small >.50R transducer.

The first approach to the assessment of this method involves half

power measurements of diameter on dialysis tubes of known diameter.

Results are summarized in Table 4.

A. Dialysis Tube Results

For a 7.7 mm tube measured diameters were ~ 7.5 mm with a 2,8 mm

crystal ( Dcrystal = .36) and 7.65 with a 5.5 mm crystal (Dcrystal = .71).

These errors would reduce the true volume flow measurement by ~ 10%.

Figure 8 displays a power scan of the dialysis tube. For vessels of

- 4 mm diameter or less problems arise: the half power diameters

are approximately 25% too small presumedly due to the curvature of the

vessel and the large crystal. This is inconsistent with the half

power measurements made with 5-8 mm crystals which result in a 10%

over estimate of diameter in a 7 mm tube. We are currently trying

to resolve this problem by considering low pass filtering of the audio

spectrum. Therefore, a more detailed and systematic approach will

be taken. Our conclusion is that the half power method is the simplest

and most accurate method for transcutaneous diameter determination

for vessels whose diameter is > 7 mm.

B. Reiteration of errors in half power measurements

Ambiguity in finding the half power points is limited by four

factors:

1) Ambient Noise. The quality of the power scan is affected

by the Doppler signal to noise ratio (S/N). Both base line shifts

and signal variance are present with poor S/N. In practice this is not
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a problem, however, when S/N ratios on the order of 20 to 50 dB

are obtained.

2) Wall motion and wall motion "noise." Wall motion tends to

"blur" the wall location during the power scan, thus a mean diameter

is obtained. While the "blurring" is reduced by multichannel operation

it is not completely eliminated because of the finite integration

time required to measure the signal power (Rayleigh signal statistics

and fading must be integrated out). Large amplitude low frequency

echoes from the wall are another wall motion problem. These echoes

tend to distort the sample function near the wall and make it appear

compressed. This problem is reduced by high pass filtering to

eliminate the echoes. Alternately, low pass filtering can be used to

select or enhance the wall echo and provide an impulse response at

the wall. We plan to examine the latter to determine its accuracy

in the diameter estimation.

3) Range attenuation. The Doppler signal power falls off as

a function of range, tending to obscure the step function endpoint.

This difficulty can be eliminated either by range gain compensation,

proper transducer design, or graphical correction of the power scan

record. See actual data from dog experiments.

4) A fourth and perhaps minor limitation is vessel curvature at

the wall. The step function concept was developed for a plane or

nearly flat surface, however, a vessel wall is a curved surface.

This curvature A, is easily shown to be

= r- "r2 -(

where a is the transducer beam diameter and r is the vessel radius.

Evaluation of this for a transducer diameter of .25r leads to a
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curvature of less than 1%.

Combination of the above limitations leads to an experimental

wall location error on the order of 1/4 sample function length and

a diameter error 'on the order of Y
- times the sample function

length. In practical terms the sample function length is on the

order of 1 mm, thus vessel diameter measurement is on the order of

± .44 mm. Although seemingly precise, this is still a 10% error on

a 4 mm vessel.

C. Half Power measurements on blood vessels

Using implanted cuffs and transcutaneous probes we have recorded

rms power scans on the abdominal aorta and carotid arteries. Consistent

with our findings in the dialysis tube, the abdominal aorta values are

accurate but the carotid diameters appear ~ 25% too small. Figure 9

exhibits power scans for the abdominal aorta. Note the range attenuation

which necessitates interpolating a half power point at the far wall.

Transcutaneous measurements produce significant power fluctuations

at the far wall (wall motion) which may obscure the half power points.

Low pass filtering may alleviate this problem. Figure 10 exhibits

power scans for the carotid artery producing diameters of ~ 3.45 mm

which we believe to be too small. Our previous measurements of

carotid inside diameters by surgical exposure result in values of

- 4 mm. Therefore, we must be cautious in using the half power method

of diameter determination in vessels less than 7 mm in diameter.

Table 5 exhibits data on half power diameters for the carotid

and abdominal aorta. The diameters for the carotid should be ~4 mm.

The diameter for the abdominal aorta is quite close to the expected

value.
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TABLE 4

Half Power Diameter Measurement

Dialysis Tube

RATIO OF CRYSTAL DIAMETER
TRANSDUCER DIAMETERS(MM) TO VESSEL DIAMETER

#116-EC65 7.47 7.55 7.47 .36
2.8 mm

LTZ 5 7.55 7.71 .71
5.5 mm

LTZ 5 8.20 8.61 8.60 1.03
8.0 mm (7.88(Rel500))

EC65 8.69 8.70 .71
5.5 mm

EC65 8.69 8.53 8.93 1.03
8.0 mm

Notes: PD #2 Tubing OD 7.8 mm
PW8 Tubing ID 7.7 mm
PRF 2
Gate 1 usec Re 3000
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TABLE 5

1/2 Power Diameters

NASA DOG 15689

RATIO OF CRYSTAL DIAMETER
TRANSDUCER TO VESSEL DIAMETER TECHNIQUE DIAMETERS

RT CAR #116 .73 Xcut 2.40

RT CAR NASA 1.44 Xcut 2.65
LTZ 5.5

RT CAR NASA 1.84 Xcut 2.00 2.40
LTZ 7.0

RT CAR R. C. Cuff .65 Potx 5.0 2.60
YB 2.5 Cuff

RT CAR R. C. Cuff .65 Potx 2.5 2.70
YB 2.5 Cuff 2.70 2.65

Notes: PD#2 RMS .15 V Vessel Diam Assumed 3.8 mm ID
PW8 Delay At 1/2 usec, 1 psec
PRF 2.3
Gate 1 usec C=1.5xi05 cm/sec
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V. Wide Gate Full Vessel Illumination

A rectangular 2 mm by 10 mm transducer was fabricated from LTZ 2

to assess to accuracy of the wide gate full illumination method to

measure mean velocity in a vessel. Presently, the zero crosser

has been used for signal processing although we calculate an error

as great as 15% may occur in determining the first moment of the

power spectrum. Our preliminary findings in the dialysis tube steady

flow system are quite encouraging. As shown in Table 6, we have

obtained results with large circular crystals and two different large

rectangular crystals, one of LTZ 5 and one of LTZ 2. By far the best

results are obtained with the LTZ 2 indicating errors in measurement

of the mean velocity in the range of Reynolds number from 2000 to

5000 are less than 7%. At the very low Reynolds numbers larger errors

occur which merit further investigation. We cannot adequately explain

the reason that larger errors occur with certain piezoelectric

materials, and further investigation is going to be conducted in

transducer design and fabrication in order to optimize the results.

Figures 11, 12, and 13 exhibit the power spectra obtained with the

LTZ 2 wide gate transducer. For a wide gate measurement one would

expect a nearly rectangular power spectrum and we are obtaining very

close approximations to that under these circumstances. We find also

that the zero crosser is a much better than expected signal processor

for signals using these spectra implying that more sophisticated

signal processing may not be necessary. However, we plan to further

investigate the use of first moment and zero crosser offset processing

of these signals to see if the accuracy can be further improved.
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TABLE 6

COMPARISON VpD vs. Vm fn(Re)

TRANSDUCER NASA LTZ 8.0 mm
NASA EC65 8.0 mm
NASA LTZ 5

Re VPD (cm/sec) Vm (cm/sec) % difference from standard

(1) (2) (3) (4) (2) (1) (1) (2) (3)
1000 15.72 17.3 18.6 18.5 13.42 13.16 19 28.9 38.6

1500 22.26 25.1 28.2 26.0 20.14 19.74 13 24.6 40.0.

2000 28.16 30.9 36.7 31.1 26.83 26.32 7 15.2 36.8

2500 33.31 36.9 42.2 34.5 33.55 32.90 1 10.0 25.8

3000 40.22 42.7 47.7 40.5 40.25 39.48 1 6.1 18.5

3500 45.75 48.5 55.1 45.5 46.97 46.06 -1 3.2 17.3

4000 51.48 53.9 61.2 50.0 53.69 52.64 -2 0.4 13.9

4500 56.45 60.0 67.3 57.1 60.40 59.22 -5 0.7 11.4

5000 61.58 65.8 73.4 61.7 67.10 65.80 -7 1.9 09.4

Full Vessel Illum (1) NASA LTZ 2 rectangle (2 mm X 10 mm)
PW8 (2) NASA LTZ 8.00 mm 21 Jan (circular)
PD2 (3) NASA EC65 8.00 mm 23 Jan (circular)
PR2 (4) NASA LTZ 5 rectangle (2 mm X 10 mm)
GN1.0
Gate 18.0 psec
Power .15V
Delay 8 psec
7.5 mm dialysis
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VI. Ultrasound Dosimetry

Preliminary efforts have been made to document the power

levels emitted by the pulsed ultrasonic Doppler velocity detector.

The first experiment was conducted at the Colorado Medical Center

in Dr. Paul Carson's laboratory (February 14, 1975). The setup

consisted of determining the force exerted by the emitted pulse

upon a highly absorbable buffer plate (SOAB). This force was

determined using an electro-balance (Cahn). The initial results

indicate that the pulse Doppler when operated at the highest

pulse repetition rate (40kc) and longest pulse width (16 cycles)

emits a sound beam which averages a power level of 296 MW/CM 2 .

In these studies a 2,8 mm circular transducer was employed.

If a 25% insertion factor is assumed for tissue, the result is

a power level of approximately 75 MW/CM 2. Peak intensity equals

4.9 W/CM 2. More work is planned in the future to document the

power levels emitted by such devices as the pulsed ultrasonic

Doppler velocity detector. We feel that intelligent use of

ultrasonic flowmeters demands that continual knowledge of the ultra-

sound dosage be at hand.
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VII. Spectral Analysis of Pulse Doppler Signals Using Sonograms

In an attempt to find the best method for determining the

average blood flow rate in an artery, we have performed analyses

of the Doppler shifted signal using sonograms. The data display

consists of the time varying audio signal displayed at varying

levels of amplitude (each different intensity of the contour

represents a 6 db change). This technique permits display of

the spectral patterns of the signal and from the graph, the various

velocity components within the return Doppler shifted signal are

easily viewed.

This report will present the initial results using this

technique and will suggest future directions. Sonograms were

made for the Doppler shifted signals from an implanted flow cuff

around the abdominal aorta of a dog (2.8 mm transducer). Two

types of sonograms were made from the Doppler shifted signal at

locations across the flow stream by approximate range gating.and

by using a wide gate which encompassed the entire flow stream.

These results will be compared with the zero crosser output

(wide gate, scan, and computer calculated).

Figure 13A depicts a sonogram showing the Doppler shifted

information received with a wide gate. The peak velocity recorded

across the flow stream is approximately 101 cm/sec if the lowest

amplitude signal is used. By selecting velocity components of

higher contour intensities (continuous contours) values of 94 and

91 cm/sec result. The entire velocity data for all combinations

are shown in Table 7.



-36-

TABLE 7

Blood velocity values (cm/sec) measured using wide and narrow gate
pulse Doppler options on the abdominal aorta of a dog.

Wide Gate

Zero Crosser Sonogram

V Peak V V Peak V
73 19.8 101,94,91 37.4

Narrow Gate

Zero Crosser Sonogram Computer Calculated
from profiles

V Peak at @centerline
81 V peak V peak V

95 42 12.2

The table shows for the wide gate the average velocity at

peak systole as claculated from the zero crosser and sonogram outputs.

The average velocity is similarly listed. The narrow gate measure-

ments for the peak velocity at the flow stream centerline are

also depicted for both the sonogram and zero crosser and finally,

the standard method of profile integration produces the average

peak velocity and the mean velocity. These data show that by

using a narrow sound beam that obviously a large portion of the

velocity information which exists towards to vessel walls will not

be detected using the zero crosser and wide gate. The result is

a higher than actual recorded blood velocity when using the zero

crosser. The sonogram whether using a wide gate or narrow gate '

produces approximately the same velocity and is close to the peak

velocity measured with a narrow gate zero crosser method. The

reason the wide gate zero crosser and sonogram methods produce
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a higher mean velocity than actual is obviously due to the narrow

sound beam. The discrepancy between the zero crosser and sono-

gram is due to the faulty method of obtaining the mean velocity

by integrating the sonogram. No weighting of the various amplitudes

of the signal were attempted.

We believe that an alternative method for computing the mean

velocity of blood in a superficial vessel may involve the use

of a large transducer and a wide gate pulsed Doppler or even

continuous wave Doppler coupled with sonogram analysis. A

possible valuable approach to attempt would be to compare this

approach to the actual blood velocity. Account must be taken of

the varying signal amplitudes (1st moment analysis) but the sonograms

offer that possibility. Sonogram analysis also offers an alterna-

tive method to the zero crosser for detecting the local velocities

across a flow stream. Figure 13B, for example, shows a sonogram

for the velocity signal recorded at the centerline. It is inter-

esting to note that a relatively narrow band signal occurs during

systole in contrast to the situation using a wide gate where a

wide range of spectra exist. Similarly, at the vessel walls, this

narrow amplitude band disappears (Figure 13C). Presumably the

vessel wall is a major influence in the pattern - both due to

its influence upon flow and the fact that the vessel wall moves in

and out of the sample volume.
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VIII. Performance of the Pulsed Doppler Velocity Meter

A. Objectives

The objective of this phase of the research program was an

evaluation of the PUDVM for laminar'and turbulent flow measurements.

Previous studies from this laboratory (1) reported on the effects of

emission pulse length, transducer and ultrasound receiver bandwidth,

and sample gate duration on the length of the PUDVM sample function.

The effects of these individual parameters on the measured velocity

profiles were not considered here since it was our purpose to determine

whether a PUDVM system with given operating characteristics could

adequately describe the nature of the various velocity profiles.

Velocity information from the PUDVM is contained in a frequency

modulated audio signal that is obtained by mixing the backscattered

(or Doppler shifted) ultrasound signal with an ultrasound signal at

the transmitted frequency. The frequency difference between these

two signals, the Doppler frequency, is directly proportional to the

velocity of the moving scatterers in the sample region and is given

by the Doppler equation
2f V cos e

Af = fDC (1)

where f is the frequency of the emitted ultrasound, V the velocity of
0

the scatterers, e the angle between the ultrasound beam and the velocity

vector and C the speed of sound in the medium. Since the PUDVM sample

region is of finite size, a spectrum of Doppler frequencies will be

measured in any flow field where velocity gradients exist such as in

a contained flow.

The purpose of the experiments reported here was to compare different

methods of determining the average frequency shift of the Doppler spectrum
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or, equivalently, the average speed of the moving scatterers within the

region of flow sampled by the PUDVM. Three techniques were used

to estimate the average frequency of the Doppler signal: (1) direct

frequency to voltage conversion using a zero crossing detector;.

(2) calculation of the first moment of the Doppler spectrum obtained

with the aid of a spectrum analyzer; and (3) computer-aided estimation

of the first moment of the Doppler spectrum using Fast Fourier Transform

(FFT) techniques. Average velocities in the sample volume were calculated

from the average frequencies using the Doppler equation and the resulting

profiles were compared to the theoretically predicted velocity distributions.

B. Methods

The experiments were conducted in a specially designed test system

which is shown schematically in Figure 14. The flow system produces

steady fully developed laminar or turbulent flow in dialysis tubes

ranging in size from 6 to 20 mm diameter. The test section consists

of a long length of circular dialysis tubing supported and submerged

in a water bath. Measurements were made at positions located several

hundred tube diameters downstream from the entrance to the dialysis

tubing to ensure that the flow was fully developd. Flowrates were

monitored with a rotometer and could be adjusted with an inlet valve.

The performance of the rotometer was verified by timed collection

andfound to be accurate to within 5% of the manufacturer's calibration

values. The working fluid in the test system was water seeded with

cornstarch or cellulose particles to act as scatterers of the ultrasound.

Concentration of the scatterers was typically 5% by volume.

An ultrasound transducer was positioned over the dialysis tube

in the vertical'plane determined by the tube axis and with the ultrasound
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beam axis at an angle of 600 to the direction of flow. The transducer

consisted of a 2.8 mm diameter lead titanate zirconate crystal with

epoxy backing.

Velocity and frequency data were obtained with the PUDVM for

flow Reynolds numbers ranging from 950 to 5000. All measurements

reported here were monitored in the flow system in a dialysis tube of

nominal diameter 7 mm. The tube diameter varied with flow rate from

7.2 to 7.6 mm and this variation was considered in the calculation

of the Reynolds numbers. For these tests, the PUDVM emission frequency

ranged from 7.25 MHz to 7.5 MHz. Other operating parameters included

an emission pulse length of 8 cycles (about 1 psec) gate of 1 psec

and pulse repetition frequency of about 20 KHz.

For each Reynolds number the velocity profile as measured from the

output of the zero-crossing detector was recorded on graph paper using

an X-Y plotter. The RMS voltage of the audio signal was monitored with

a B and K RMS voltmeter. Peak RMS audio amplitude was maintained between

0.15 and 0.25 volts RMS and the signal to noise ratio of the audio

signal was at least 40 volts/volt. The velocity signals were scanned

continuously across the tube for each Reynolds number. A spectrum

analyzer (Hewlett-Packard model 8552/56) was used to determine the

frequency spectra of audio signals measured at several range locations in

the tube. The relative amplitudes of the frequencies present in the

signal were recorded as a function of frequency on the X-Y plotter.

The recorded spectra were subsequently used to determine the first

moment of the Doppler signal. In addition, audio signals from these

same range locations were recorded on magnetic tape for computer

analysis using FFT techniques.
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C. Results

Typical recordings of a velocity profile and frequency spectra

for laminar flow (Re=1430) are shown in Figures 15 and 16. A tracing

of the continuous velocity profile is plotted in Figure 15 as a

function of the distance from the centerline of the tube. The measured

profile is shown here compared to the theoretically predicted profile.

The measured profile is spread at the far wall and the obvious hump

on the velocity profile between the near wall and the center of the

tube is apparently due to the PUDVM boundary error (1). In this

example, the PUDVM underestimates velocities close to the near wall

and overestimates velocities at the far wall. The measured centerline

velocity is within 3% of the predicted value.

The frequency spectra at six locations in the tube are shown in

Figure 15. The spectra were measured at range increments of 1 usec

across the tube however for clarity the data presented in Figure 3

are for increments of 2 Usec. For each spectrum the baseline was

set approximately 8-10 db below the peak signal level. The baseline

levels (in db) are referenced to a sinusoidal input signal of 1.0 V

RMS. The noise baseline for zero flow was -70 db or less. The first

moment of the Doppler spectrum was determined from these data and the

average velocity within the sample region calculated using the Doppler

equation.

A comparison of the theoretical velocity profile, the measured

profile (using analog output of PUDVM) and the profile calculated from

the first moment of the Doppler spectra are shown in Figure 17. The

solid line is the predicted profile, dashed line the measured profile

and the points correspond to the calculated profile. Agreement between

the predicted profile and either the measured or calculated profile is
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excellent within the central core of the flow and the measured and

calculated distributions are within 10% of each other except near the

walls of the tube. For distances from the wall less than 1/4 the

tube radius both the zero-crossing counter and first moment calculation

lead to substantial errors in the velocity estimate for this example.

Similar comparisons can be made for the case of fully developed

turbulent flow. Figures 18 and 19 illustrate the measured velocity

profile and Doppler frequency spectra respectively for a flow with

Reynolds number 3860. The measured profile is compared to the

theoretically predicted mean velocity distribution given by Schlichting

(2) as

u = k(r)1/n

u R

where u = axial velcoity, u = average axial velocity, and n and k

depend upon the Reynolds number. For Reynolds numbers from 2000 to

5000 k and n remain approximately constant and have values of .791

and 6.0 respectively.

Over the central 80% of the tube cross section the PUDVM consistantly

overestimates the mean velocity by 5 to 10%. The shape of the measured

profile is again somewhat smoothed and especially distorted near the

tube walls.

The Doppler frequency spectra for this example of turbulent flow

are shown in Figure 19. They are considerably more broad than the spectra

observed in laminar flow because of the random distribution of turbulent

velocity fluctuations that are superimposed on the mean flow. The

spectra remain relatively symmetric however. Figure 20 shows the profile

calculated from the first moment of the Doppler frequency spectra along



-46-

with the measured and theoretical profiles. The profile based on the

first moment agrees well with the measured profile except in the

neighborhood of the walls.

Comparisons among measured, calculated and theoretical profiles

for seven different Reynolds numbers are summarized in Figures 21-

27. Theoretical profiles are shown in solid line, measured in dashed,

and the dots represent velocities calculated from frequency spectra.

Computer aided estimates of the velocity profiles were obtained

using Fast Fourier Transform (FFT) techniques to calculate the first

moment of the Doppler spectra. Operation of the FFT program used for

this analysis is described in Appendix I. Typical results of the FFT

analysis are shown in Figures 28-34. The FFT estimated profiles are

compared to theoretical profiles for Reynolds numbers ranging from

950 to 4800. The FFT consistantly overestimates velocities for both

laminar and turbulent profiles. For laminar flow the estimated

profiles have the characteristic parabolic shape of the velocity

distribution in a circular pipe, however, the peak (centerline)

velocities are overestimated by 15 to 20%. The shapes of the calcu-

lated turbulent profiles are not in obvious agreement with theoretical

predictions.

D. Observations

1. In laminar flow, the velocities in the central core of the

tube (±0.6 radius from the tube center) as measured by the zero-crosser

and first moments from the wave analyzer spectra agree within 5% with

the expected theoretical velocities.

2. In turbulent flow, estimates of velocities within the central

core of the tube by the zero-crosser and first moment from the wave
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analyzer agree with each other within 2-3%, but both peak velocity

estimates are 6-17% higher than the expected theoretical velocities,

the error decreasing with increasing Reynolds number. This over-

estimation of velocities was consistantly found in repeated experiments.

3. Velocities estimated from the audio spectra using FFT and

computer techniques are from 10% (in laminar flow) to 22% (in turbulent

flow) higher than the expected theoretical values.

4. In flow near the walls, the velocities estimated by spectral

analysis, both with the wave analyzer and FFT, are many times the

expected theoretical values. This is most likely due to the low power

of the signals near the wall. In the case of the wave analyzer,

spectra obtained near the wall often had a baseline level only 10 Odb

above the noise level. Inclusion of white noise into the spectra would

tend to shift the first moment of the spectra toward higher velocities.

5. Overall, the zero crossing counter provides a velocity estimate

that is at least as good as the velocity calculated from the first

moment of the Doppler spectrum. Near the walls, the zero crosser

gives a better indication of the true velocity than the frequency

spectrum.

E. Conclusions

1. Central core velocities as estimated by the zero crosser and

the first moment from the wave analyzer spectra agree well with

each other, but are only estimates of the true velocity in laminar

flow.

2. The velocities estimated by the first moment of the FFT

analyzed audio signal are not accurate estimates of the true velocity.

3. Since the zero crosser is more reliable near the walls, it
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gives a more accurate estimation of the velocity profiles than does

the first moment of the audio spectra from the wave analyzer. However,

since the baseline level of the audio signal near the wall was not held

constant and, in fact, often approached noise levels, an electronic

first moment processor might prove as accurate as the zero crosser

near the walls.



Constant Head Tank

Pump

Rotometer

Stereotaxis

Transducer Water Bath 4-Dialysis Tubing

Figure 14 Schematic Drawing of Test Tank Used to Produce

Fully Developed Laminar and Turbulent Pipe Flow
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IX. Performance of the NASA-PUDVM

A. Objectives and Methods

The PUDVM designed and built by the NASA Ames Research Center

was loaned to our laboratory for use in animal experiments and for

testing and comparison with other pulsed Doppler velocity meters.

The NASA instrument was used for studies on coronary blood flow in

horses and the pertinent physiological and biomechanical results

have been summarized in the report "Hemodynamic Patterns in Coronary

Arteries" by Wells et. al. This report is included here as Appendix

II.

The performance of the PUDVM was determined from tests carried out

on the flow system described above in Section V. In general the performance

of the NASA-PUDVM in the tank facility was inferior to the performance

of the McLeod instrument. This was attributed to the low signal to noise

ratio and the low sensitivity of the NASA-PUDVM. It was decided that

any detailed evaluation of the PUDVM capabilities and subsequent

definition of techniques for the transcutaneous measurement of flow

should be based on tests with the McLeod PUDVM. These results are

described above in Section V.

The effect of emission pulse length, gate length and pulse repetition

frequency on the performance of the NASA-PUDVM was determined by

comparing the velocity profiles measured for steady laminar flow in

the test system. In addition, the accuracy of the flowmeter was

measured for different input gains.

B. Results

An important factor that strongly affects the accuracy of the

PUDVM is the signal to noise ratio S/N. The number of scatterers
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directly influences the strength of the backscattered Doppler signal

and it was found that in tank studies with the NASA-PUDVM the test

fluid had to contain a 10 to 15% concentration of scatterers to bring

the signal to an acceptable level. However, with a high concentration

of scatterers a proportionally larger number of particles would settle

to the bottom of the tube and distort the profile from the desired

parabolic shape. It was not found practical to run the test system

for more than a minute or two with particle concentrations greater

than about 10% by volume. Even at this concentration, however, the

two input amplifiers had to be operating at their maximum effective gain

in order. for the PUDVM to properly estimate velocity. To determine

the sensitivity of the PUDVM to input gain, the following experiment was

performed: The PUDVM sample region was centered on the tube axis

and flow maintained at a constant rate. The output of the PUDVM

was measured for various settings of the "gain" and "range" amplifiers

and compared to the expected output which was determined from the

calibration signal. The results are given in Figure 35 which, shows curves

of output vs. gain for five values of range gain. Notice that only

for range gains of 95 and 100% of full scale was the PUDVM output within

5% of the expected value. Furthermore in order to achieve this adequate

output the gain was in excess of 70% of its full scale value. For gains

above about 75% the audio signal became distorted and the output would

decrease slightly. Hence to measure velocities accurately in the tank

system the range gain had to be set between 95 and 100% and the gain

between 70 and 75%. The optimum operating point was easily found

by maximizing the output of the PUDVM with the two gain controls.

However, there was not guarantee that the maximum output would agree

with the expected output. This difficulty was particularly acute
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when attempting to use the PUDVM to measure velocities at distances

more than a few millimeters from the transducer. For this reason,

the NASA-PUDVM is not suited for transcutaneous measurements of

hemodynamic patterns. On the other hand, when measuring blood flow

in animals with transducers positioned directly on the vessel, the NASA-

PUDVM estimates the time varying velocity as well as the McLeod

PUDVM. This fact was confirmed by direct comparison of the NASA

flowmeter with the McLeod detector. It appears that when the ultrasound

pulse is scattered from cells in whole blood (45% concentration

of scatterers) the power in the received echo is sufficient to produce

an acceptable signal to noise ratio within the PUDVM. The output of

the zero crosser then provides an accurate measure of the velocity.

The NASA-PUDVM operates with an emission pulse of 4, 8, or 16

cycles and at a pulse repetition frequency of 13, 26, or 52 KHz.

To obtain sufficient S/N ratios in the tank studies the PUDVM generally

had to be operated with the maximum burst length and at 26 or 52 KHz

PRF.

Velcoity profiles within the dialysis tubing were obtained by

slowly scanning the PUDVM sample volume across the tube and plotting

the velocity estimate as a function of delay time (range). Figure 36

illustrates two measured profiles and compares them to the predicted

parabolic profile. The measurements were made with an emitted pulse

of 16 cycles, a gate of 1 Usec and at PRFs of 26 and 52 KHz. The shapes

of the measured profiles agree well with the true profile and there is

no significant effect of PRF on the estimated profile. The measured

centerline velocity differs by less than 5% from the predicted value and

this difference is well within the anticipated experimental error.
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The distortion of the measured profiles at the near wall appears to

be less than near wall distortion observed in the flow system using

other pulsed Dopplers. This might be due to the low sensitivity

of the NASA-PUDVM, for if the detector is sampling only the peak of

the Doppler spectrum, the effective sample region would be reduced.

In addition, the power of the received signal would be diminished

leading to an underestimation of the true velocity. This effect is

evident in Figure 36. The fact that increasing the sample gate from

1 psec to 5 psec does not markedly affect the measured profile and lends

some support to this interpretation.

Figure 37 shows the effect of sample gate onthemeasured profile.

Again distortion or spreading of the measured profile is not apparent

at the near wall. As the sample gate is increased, the profile is

spread, however, not to the degree that one would expect if the effective

sample region increased at the same rate. That is, increasing the gate

tends to increase the power in the received signal more than it tends

to distort the profile. The increase in signal power leads to an improved

estimate in velocity. Between thenear wall and centerline of the tube,

the velocities measured using a 5 psec gate are in excellent agreement

with the true values.

Figure 38 shows the effect of burst length on profiles measured

with the NASA-PUDVM. The power of the backscattered signal varies

asthe length of the emitted pulse. Since this detector is extremely

sensitive to signal strength, we expect inferior performance when using

shorter pulse emission times. This prediction is borne out by the

curves in Figure 38, especially for emitted bursts of 4 cycles.

The same response is expected for decreased pulse repetition frequencies.



-68-

Figure 39 illustrates the effect of halving the PRF when using an emitted

pulse of 8 cycles. For a PRF of 25 kHz the measured peak velocity is

more than 20% in error.

C. Discussion and Recommendations

It was not possible to fully evaluate or calibrate the NASA-PUDVM

under the test conditions described above. The major problems were

the low gain of the detector and the low S/N ratio. Backscattered

power could be increased by using more or larger scatterers or scatterers-

having a greater scattering cross-section. However, additional problems

such as particle settling, profile distortion and non-specular scattering

are encountered. The NASA-PUDVM appears to operate satisfactorily

when measuring in blood, however it was not practical to use blood in

the test system. Improved signal amplification techniques should

markedly improve the performance of the NASA-PUDVM and allow for a

more extensive evaluation of the instrument.

The following suggestions are made to improve the utility of the

NASA-PUDVM. To optimize the instrument performance for use with different

transducer material and transducer configurations, provision should be

made for easily adjusting the emission frequency. At present, in order

to change the ultrasound frequency it is necessary to tune both the

master oscillator and the receiver amplifier circuit. These adjustments

are inconvenient to make and time consuming. When using the flowmeter

for measurements in animals, it is virtually impossible to readjust

the PUDVM as different transducers are used. Operating an ultrasound

transducer at a non resonant frequency markedly reduces its sensitivity.

Calibration of the NASA-PUDVM could be simplified if the calibration

signal was a frequency of a fixed percentage of the oscillator frequency.
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As designed, the device provides a calibration voltage proportional to

a specific Doppler frequency shift. To calculate the corresponding

velocity it is necessary to know both the speed of sound in the test

fluid and the PUDVM center frequency. By using a known percentage of

the center frequency, only the speed of sound would have to be known

to determine the calibration velocity.
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X. Standard Test System

A. Objective

The objective of this work was to develop and test a hydraulic

flow system that could generate a uniform laminar flow with a linear

velocity profile and constant velocity gradient. This system could

be used as a standard for evaluating and calibrating pulsed ultrasound

flowmeters and transducers. The system was also to be used to determine

the characteristics of the sample region. When sampling a linear velocity

profile the spectrum of the Doppler audio signal provides a measure

of the true spatial distribution of the sample region. In this case,

the Doppler frequency is proportional to range and length of the sample

region is obtained directly from the band width of the audio spectrum.

B. Design

An almost linear velocity distribtuion can be generated between

two concentric cylinders by rotating the outer cylinder at a constant

rate and holding the inner cylinder stationary. For this case, the

velocity as a function or radius r is given by

.(1+h)2 2
r r12

v(r) h h (r- r)

1 1

where rI is the radius of the inner cylinder, h the distance between

cylinders and w is the angular velocity of the outer cylinder. Referring

to Figure 40; for a transducer location at r=rl having a beam inclined

at an angle a to a radius vector passing through the transducer, the

velocity component along the beam at radius r is V(r)cose=VD where

cose=(rlsina)/r. This is the component of velocity that the PUDVM

will sense and the corresponding Doppler frequency is
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2foV D
Af- C

Radial position r is related to the distance along the beam R and

can be determined from the law of cosines. The Doppler velocity

then becomes

wrlsina

1-1 +( i)2 + 2(R )cosa
(l, )2 r r1

In order to sense a linear velocity distribution, the Doppler velocity

should vary directly as range R. The degree to which VD approximates

a linear function depends on a and the ratio R/rl. The parameters

rl, h/rl and w only effect the magnitude of VD. Defining the function

g(-,a) as

g( , a) = [1- l
1+(i)2 + 2(-R)cosa

1 1

the normalized velocity distribution as a function of normalized range

is given by plotting g(R, a) vs. R/rl for various values of a. Thisr R

relationship is depicted graphically in Figure 41. Notice that for - >

0.1 deviations from linearity depend strongly on a. The normalized

velocity closely approximates a linear distribution for values

of a about 700. The deviation from linearity can be determined by

comparing the actual velocity at any range with the corresponding

velocity based on a linear distribution where the linear and true

profiles have the same peak velocities. In general, the maximum

difference between these two velocities is less than 5% of the peak

velocity for 60'<a<8 00. Hence, to a good approximation, the measured

velocity profile will appear linear. The above derivation and conclusions

do not account for finite width of the transducer beam and the errors
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that may arise. At a given distance from the transducer, a cross

section of the beam will sense a band of velocities with an average

equal to the value at the center. Although this effect is not expected

to introduce significant errors in the velocity estimate, it will

cause a frequency spreading in the audio signal. This spreading is

minimized for large values of h/rl and for samples taken at large R and

does not depend strongly on a. For h/r1 > .25 the bandwidth of a sample

region of zero length will be less than 5% of the peak Doppler frequency

for a transducer with radius .01 r.

A schematic of the flow system is shown in Figure 42. The cylinders

are made of 1/2" thick aluminum and the outer cylinder is mounted

on a turntable which is supported by a thrust bearing. The inner

cylinder is stationary and suspended within the outer cylinder by two

supports. The turntable is connected to a variable speed dc motor with

a rubber belt. A transducer and transducer holder are shown in Figure

43, which also indicates how the transducer is positioned in the flow

system. The ultrasound beam lies in a horizontal plane.

C. Results

Only preliminary measurements of velocity profiles and sample

volumes have been made using the standard flow system. A detailed

summary of the effectiveness of this system for calibrating flowmeters

and determining transducer characteristics will be included in the next

semiannual report on this project. The working fluid was a water-

glycerol solution of viscosity .04 dynes-sec/cm
2 seeded with cellulose

particles. The Reynolds number based on the gap width and average

velocity in the gap was less than 2000 thereby assuring laminar flow. A

velocity profile across part of the gap is shown in Figure 44. The
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PUDVM was operated with a burst of 8 cycles (fo=7.04 MHz) and a gate

of 1 psec. The zero offset on the range axis results from the fact

that the ultrasound crystal is recessed about 3 mm from the edge of

the inner cylinder. The range is given in mm from the edge of the

cylinder. The profile is linear for R < 10 mm but deviates significantly

from linear for R > 10 mm. The transducer used for this test had a

diameter of about 1.9 mm and the power of the backscattered signal

dropped rapidly for R > 10 mm. This could account for the deviation

in the profile. Additonal tests will be conducted using blood in the

flow system which should give a stronger signal and improved S/N ratio

at large R.

To estimate the length of the sample region, the window or receiver

gate was positioned.within the linear portion;of the profile and the

frequency spectrum of the audio signal was measured. Since the frequency

of the backscattered signal increases linearly with distance from the

transducer, the frequency spectrum of the return signal, i.e. the power

spectrum of the Doppler signal as a function of frequency, is equivalent

to the power of the signal as a function of range. Hence, the plot

of the frequency spectrum gives the shape of the sample region along the

beam axis. Figure 45 gives frequency spectra of the Doppler signal for

various sample gate lengths. Only about 10 db of the audio power spectra

are shown. For a gate of 1 psec the bandwidth of the spectrum is about

725 Hz which corresponds to a sample length of about 3 mm along the

beam. As the sample gate is increased from .5 psec to 4 usec the bandwidth

of the sample region increases from about 700 to 900 Hz. This corres-

ponds to an increase in the length of the sample region of less than .3 mm

for each 1 Psec increase in gate time. This estimate of sample length
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only includes that portion of the sample region where the power of

the Doppler signal is more than about 10% of the peak power of the

return signal. The extent to which the effective sample region is

broadened by the low power Doppler signals must still be determined.

Additional studies will be made using this linear profile

flow system to test the effects of transducer material and backing, gate

width, burst length and delay on the length of the sample region.
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Appendix I

FFT PROGRAM TO ANALYZE ULTRASONIC PULSED DOPPLER AUDIO OUTPUT

The purpose of the program is to perform a frequency analysis on the

Doppler shifted audio signal and to thereby provide values indicating

the variation of blood velocity with time.

The audio signal is divided into short time intervals and each

interval is analyzed using a discrete Fourier transform, the transform

is then used to calculate the power spectrum for the interval, i.e. the

amount of power in the signal at each frequency. A method is then used

to select the frequency "most representative" of the interval and from

this frequency a velocity can be caluclated using the relation:

cAf
2fo cos a

where c represents speed of sound in blood, fo is the ultrasound

frequency emitted, a is the angle between the ultrasound source and

the direction of blood flow, Af is the Doppler frequency and V

is the velocity. Once the velocity has been obtained for each interval,

the time varying velocity can be constructed for a 1 second interval.

Program Structure

Input to the program consists of digital data on tape obtained by

digitizing the pulsed Doppler audio signal. At present the analog

signal is digitized using a sample rate of 25.6 kHz. This will

provide sufficient information to Fourier transform a signal up to

12.8 kHz, much greater than the expected Doppler shift.

The input physical record is 256 words long, each word containing data

values in packed format. Thus, each physical record represents 1280

data points.
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Program output is a series of microfilm plots of power spectra for

each interval analyzed and time varying velocities for each second

of time.

Analysis

The audio signal is treated in lengths of one second, and at present

is divided into intervals in 1/100th second. The frequency resolution

of the Fourier analysis increases with the length of time interval,

thus long intervals are desirable. However, with long intervals, time

resolution suffers and information about a rapidly varying signal will

be lost so that for this consideration short time intervals are preferable.

A method is used which attempts to combine these approaches, in the hope

of gaining the advantage of both.

The data invervals of 1/100th second are analyzed in pairs, equivalent

to a time interval of 1/50th of a second. Subsequent pairs are formed

from the last member of the preceding pair and the data interval

following it. Thus a frequency resolution of 50 Hz is obtained and

the analysis is performed every 1/100th of a second and time resolution

is preserved. Each 1/50th of a second interval is transformed using

the fast Fourier transform, the square of the transform gives the power

at each frequency.

The problem now is to select the frequency considered to best represent

the power spectrum. The method used is to calculate an average frequency

according to the formula:
SPifi where Pi is the power
S Pif and fi is the frequency

c Pi

In order to limit the effect of noise on this computation, it is repeated,

using only the portion of the,spectrum lying within + 1.25 kHz. This

is in effect a filter or data window.
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Its effect is to "stretch" the resulting frequencies along the y

axis such that peak velocities are high and low velocities near

zero.

At present three velocity plots are made using frequency of peak

power for each interval, average power and average filtered power.

In addition, there is a printout giving the actual value of the

frequency for each interval using these three methods.
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APPENDIX II

HEMODYNAMIC PATTERNS IN CORONARY ARTERIES

by
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ABSTRACT

A pulsed ultrasound Doppler velocity meter has been used to map

the time varying velocity waveforms in the exposed left coronary arter-

ies of anesthetized ponies. Velocity measurements were made without

invading the vessels or disturbing the hemodynamic patterns. Typical

recordings of velocity waveforms and calculated velocity profiles in

the main, descending and circumflex branches are presented. Marked local

velocity fluctuations were measured in the major coronary branches and

appear to result from longitudinal vibrations of the vessels. In general

the coronary flows are characterized by peak Reynolds numbers of 300 to-1

600 and maximum shear rates of 400 to 600 sec .
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HEMODYNAMIC PATTERNS IN CORONARY ARTERIES

INTRODUCTION

The hydrodynamic events of blood flow appear to have a strong influence

on the development and distribution of arterial disease. Fry [1]* and Caro

et al. [2] have suggested relationships between arterial wall shear stress

and the development of atherosclerosis although the exact role of the shear-

ing stress in the disease process (i.e., whether it is a causative or con-

trolling factor in atherogenesis) has not been resolved. The frequent

involvement of the left coronary artery and its branches in atherosclerosis

necessitates a complete description of the normal hemodynamic patterns in

these vessels in order to understand the role of fluid mechanics in athero-

genesis. In particular, local blood velocity gradients, especially near

the vessel walls, may be most significant in governing the disease process.

Indeed, the behavior of the flow near the wall markedly affects the trans-

port of substances across the endothelium and determines the nature of the

flow induced mechanical stresses on the vessel wall.

In general, arterial blood flow can be described as nonsteady and

laminar although flow disturbances and turbulence might be expected to

occur near the entrance to the aorta and in vessels having complex geometry.

In addition, blood flow is not necessarily unidirectional. Because of the

pulsatile nature of the heart (pump) and the distensibility of the vessels,

flow reversal is typically observed in large arteries and may often be

accompanied by periods of three dimensional flow. Secondary flows can be

generated by centrifugal effects and would be expected in the arch of-the

*Numbers in brackets designate References at end of paper.
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aorta or near arterial branches. Similarity parameters of interest for

studies of arterial hemodynamics are the Reynolds number Re = UD/v based

on.either the peak or the average forward velocity and the Womersley [3]

unsteadiness or frequency parameter a = R(w/v) (U = velocity, D = 2R =

vessel -diameter-, v-= -kinematic viscosity -and-w -= -frequency --of-he flow-

oscillations). Since the flow is not purely sinusoidal, a represents the

ratio of the vessel.radius to the thickness of the oscillation boundary

layer associated with each harmonic component of the blood flow pulse.

Alternatively, taking w equal to the heart rate or fundamental frequency

of the flow oscillations, a2 can be interpreted as the ratio of the time

required for a velocity change to be transported across a vessel by viscous

transport to the time of one cardiac cycle. In animals these parameters.

may vary rapidly and over a wide range depending upon such factors as the

physiological condition of the animal or the consequences of surgical pre-

parations. In general, the maximum Reynolds number is less than 10,000

and the unsteadiness parameter less than 25.

Although abundant information is available regarding the fluctuations

and distribution of volumetric flows in the cardiovascular system,.our

understanding of the fluid mechanics of the circulation requires a descrip-

tion of the velocity distribution patterns and local velocity waveforms

throughout the arterial system. At present, only two methods have been

successfully applied for "point" velocity measurements in the arteries of

living animals: hot-film anemometry [4-7] and pulsed ultrasound Doppler

techniques [8-10]. To measure blood velocity with an anemometer system a

hot-film probe is placed directly into the flow stream either by vessel
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puncture or with the aid of a catheter. Velocity profiles are constructed

from time varying velocity waveforms obtained at various locations in the

lumen cross section as the probe is traversed across a-vessel diameter.

.When the hot-film probe is positioned near the vessel wall, the normal

flow pattern in that region is altered and the corresponding velocity wave-

forms do not represent those of the undistrubed system.

The pulsed ultrasound Doppler velocity meter (PUDVM) provides 
a less

traumatic measurement of blood velocity than a hot-film anemometer since

it is possible to monitor velocity waveforms extraluminally or transcutan-

eously. The PUDVM operates in a radar-like mode which allows measurements

to be made at specified ranges within a blood vessel. This differs from

continuous wave (CW) ultrasonic velocity detectors which lack range resolu-

tion and are used to measure volumetric flow rates. The PUDVM measures the

average velocity of blood cells in a small volume within a blood vessel by

sensing the change in frequency of ultrasound scattered by the moving

particles. Velocity waves from sample volumes located at increments across

the vessel lumen are obtained by electronic range gating and velocity pro-

files at specifid instants of the cardiac cycle can then be constructed.

In addition to the fact that this measurement technique is noninvasive in

the sense that the blood vessel walls remain intact, it has the additional

advantage of not disrupting the normal blood velocity patterns. The pulsed

ultrasound flowmeter is suited for measuring velocity distributions in

arteries as small as 6 or 7 mm in diameter and has been employed in moni-

toring blood velocity waveforms in the canine carotid and femoral arteries

[10].
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METHODS

Pulsed Ultrasound Velocity Meter

The transducers used in this study consist of a small disk of lead

titanate zirconate (PZT-5) bonded with epoxy to the inner surface of a

polystyrene holder which is fashioned in the form of a half cuff. The

circular piezoelectric disk acts as both the emitter and receiver of ultra-

sound and is mounted such that when the half cuff rests on the surface of

a blood vessel the crystal is positioned at an oblique angle to the flow.

The cuffs range in size from 3 to 7 mm diameter and contain crystals of

1.5 to 2.5 mm diameter.

The pulsed Doppler velocity detector used in these studies was developed

by the NASA Ames Research Center and is based on a design by F. D. McLeod.

The directional PUDVM generates pulses of 7-8 MHz ultrasound 4, 8, or 16

cycles in length and at a repetition rate of 13, 26, or 52 kHz. These

pulses are used to drive the transducer which directs acoustic waves into

the tissue structure and blood vessels. Echoes from these structures and

from blood cells are received by the transducer during the interval between

pulses. The arrival of the backscattered ultrasound at the transducer is

delayed in time by an amount proportional to the distance between the trans-

ducer and the scatterer and the frequency of the returning ultrasound is

shifted in proportion to the velocity of the blood cells which traverse

the ultrasound beam. The velocities of the moving targets are calculated

directly from the Doppler formula:

V Af c (1)
V 2f cos(

where V is 'the target or particle velocity, Af the Doppler frequency shift
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of the backscattered ultrasound, fo the frequency of the emitted ultra-

sound, c the speed of sound in blood or tissue and e is the angle between

the ultrasound beam and the target velocity vector. By time or range

gating the return signal, echoes from targets within specific regions of

the vessel can be selected for processing. The size of the sample region

is determined primarily by the characteristics of the transmitted ultra-

sound pulse, the transducer radiation pattern, the time over which the re-

turn signal is observed and the sensitivity of the signal processor. For

the PUDVM and transducers used in these experiments the effective sample

region was determined to be about 1 to 1.5 mm in depth while the cross

sectional area of the sample region is approximately equal to that of the

piezoelectric crystal [11].

The frequency of the backscattered signal received by the transducer

during the observation period is compared to the frequency of the original

emitted burst in order to dterrine the Doppler shift or difference fre-

quency Af. An analog voltage proportional to the Doppler frequency is

obtained with the aid of a zero crossing detector and serves as a measure

of the average velocity of the scatterers within the sample volume. Pro-

cessing the signal in this fashion limits the output frequency response

of the PUDVM to about 15 Hz, however, the instrument is equally sensitive

to velocities in the forward and reverse directions.

Velocity Measurements in Coronary Arteries

A pulsed Doppler velocity meter was used to monitor blood velocity

waveforms in the left coronary arteries of 12 ponies of unknown age and

history. The ponies ranged in weight from about 125 to 250 kg. Anesthesia
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was induced and maintained by an intravenous administration of barbituate

and positive pressure ventilation was provided throughout the procedure.

The animals were placed in right lateral recumbancy and the chest was

entered through a routine left fourth intercostal thoracotomy incision.

The lungs were retracted from the operating field and the pericardium opened

with a T-shaped incision. The epicardial fat pad was opened immediately

over the major branches of the left coronary artery which lie in the coro-

nary groove on the surface of the heart. The main branch of the left

coronary artery is short and divides within a few millimeters of its origin

at the root of the aorta into an anterior descending branch (LAD) and a

circumflex branch. At the bifurcation the LAD branch generally proceeds in

a straight line from the main branch whereas the circumflex branch joins at

an angle of about 90 degrees. Segments of the left common coronary artery,

circumflex branch and descending branch were isolated from the surrounding

tissue over lengths of i to 2 cm to allow for positioning of the flow trans-

ducers. Measurement sites were located on the main, circumflex and descend-

ing branches immediately adjacent to their common junction and on the

descending branch 2 to 5 cm below the coronary bifurcation. A half cuff

was placed on the vessel at the chosen site and secured to the vessel with

a strip of umbilical tape 5 mm in width. Care was taken not to distort or

partially occlude the vessel in order that the normal hemodynamic patterns

would be maintained. Acoustic coupling between the ultrasound transducer

and the blood vessel was provided by Aquasonic gel or a small blood clot

placed between the piezoelectric crystal and the vessel wall. Time vary-

ing velocity waveforms were measured at increments of .5 to .75 mm along
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the path of the ultrasound beam between the near and far walls of the vessel.

The beam was inclined at an angle of 45 to 60 degrees to the longitudinal

axis of the artery and the direction of the velocity vector was assumed to

be parallel to this axis. Eight to twelve sequential velocity waveforms

were obtained at each range location and a single scan across the vessel

would require from 2 to 4 minutes to complete. Velocity data and an electro-

cardiogram were recorded on a strip chart and on magnetic tape for subse-

quent computer processing and analysis.

RESULTS

Figure 1 is a computer plot of one cycle of an average centerline

velocity waveform obtained in the LAD branch and illustrates the general

characteristics of a coronary flow or velocity pulse. The beginning of

the cycle coincides with the R-wave of the electrocardiogram which signifies

the onset of ventricular contraction. During the first part of the cardiac

cycle (systole) intrmuscl - ressuro in ti rh ntractina left ventricular

wall increases and causes the peripheral coronary arteries, capillaries

.and veins to close leading to a marked decrease or transient cessation of

left coronary artery flow. As the.heart muscle relaxes and the hydraulic

impedance of the coronary circuit decreases the blood velocity increases

rapidly and the maximum flow generally occurs during the latter portion of

the heart cycle (diastole). This behavior is evident in the record of

Figure 1 which shows the-LAD velocity decreasing during systole from an

initial value of 115 cm/sec to about 20 cm/sec and then rising again to

about 120 cm/sec during diastole. Based on a vessel diameter at peak for-

ward flow of 5 mn the maximum Reynolds number for this example is 1500 and
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the Womersley unsteadiness parameter for the heart frequency is about 3.5.

Velocity and flow oscillations in the frequency range-of 5 to 10 Hz

are often measured during systole and early diastole. It appears that the

ventricular contractions generate stress waves that propagate through the

heart muscle (myocardium) and cause the coronary arteries to vibrate.

These waves are readily observable as they travel across the surface of

the heart and their intensities can vary markedly. The presence of this

type of wave is seen on the velocity record in Figure 1 and appears to in-

duce an oscillation at about 7 Hz on the mean coronary velocity during late

systole. The low amplitude high frequency fluctuations seen on this veloc-

ity record (particularly evident during late diastole) are due to statisti-

cal variations in the output of the zero crossing detector which is used

to convert the Doppler frequency shift to an analog voltage. The fluctua-

tions do not represent flow disturbances or turbulance.

Estimates of the time varying velocity profiles in this same vessel

are constructed using the average velocity waveform for each range location

and are shown in Figure 2. Profiles are calculated at 18 equally spaced

time intervals during the heartcycle and are plotted sequentially with a

10 cm/sec offset between each profile for the sake of clarity. Figure 2

(a) begins at the bottom with the profile for t=o and ends at the top with

the profile in the cycle having the greatest average forward velocity.

Remaining profiles are given sequentially in Figure 2 (b) beginning with

the uppermost curve. The last profile of the heart cycle is at the bottom

of Figure 2 (b). In the profile calculations account is made for the trans-

ducer orientation and the profiles are plotted as a function of distance
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from the transducer along a line normal to the vessel axis. The diameter

of the flow stream can be estimated from the width of a velocity profile,

however, significant errors may be introduced since the profiles are dis-

torted near the walls due to the finite sample volume of the PUDVM. In

order to compare relative vessel size among the animals studied, vessel

diameters were estimated from the peak forward velocity profile. The dis-

tance between the intersections with the zero velocity axis of the lines

tangent to the profile at the points of maximum positive and negative slope

was taken as the approximate vessel diameter. For the data shown in Figure

2 the lumen diameter calculated on this basis was 5.0 mm while a direct

measurement of the vessel yielded a value of about 4 mm. The profiles are

relatively symmetric and well developed and resemble profiles for laminar

oscillatory flow [3,12]. The profiles are drawn with straight line segments

connecting the velocity values at adjacent range locations and sharp dips or

peaks in the curves can result from slight variations in heart rate, cardiac

output or respiration during the time required to complete the vessel scan.

Figures 3 through 8 illustrate representative velocity waveforms and

profiles from the main, descending and circumflex branches of the left

coronary artery of a single pony. These data were obtained over a period

of about 30 minutes and during this time the pony's heart rate increased

from 60 beats/min to about 71 beats/min. Velocity waveforms in the main

branch at 7 equal spaced locations from the center of the vessel to the

far wall are.shown in Figure 3. Again notice the decrease in mean velocity

during systole followed by a sustained forward velocity during diastole.

In this example an oscillation of 6 Hz is seen superimposed on the velocity
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waveforms throughout the heart cycle and is particularly pronounced during

systole. Velocity profiles corresponding to these waveforms are given in

Figure 4. Successive profiles are off-set vertically by a distance equiva-

lent to a velocity increment of 2 cm/sec. From these records it appears

that the time varying velocity measured during systole at a distance of

3.1 mm is slightly elevated compared to the velocities at neighboring range

locations. Most probably, this artifact results from a momentary change in

cardiac output or arterial pressure or it may be associated with the induced

vibration of the vessel.

Velocity patterns from the near wall to the center of the descending

branch are shown in Figure 5. Generally, the waves are similar in shape

to waves in the main branch although the average velocities are somewhat

higher in the LAD because of its smaller diameter. Vessel diameters esti-

mated from the profiles were 6.4 mm for the main branch and 5.9 mm for the

descending branch. Profiles for the LAD are plotted in Figure 6.

The characteristic form of velocity waves in the circumflex branch

is markedly different from that in the main and LAD branches. Figure 7

illustrates the average velocity waveforms obtained in a scan of the

circumflex branch from the near wall to the center of the vessel.. Veloc-

ity fluctuations resulting from the vibratory motion of the vessel are

again present during systole, however, their magnitudes are less than half

of the corresponding variations recorded from the main or LAD branch.

Furthermore these oscillations do not appear on the velocity waveforms

during diastole. With the exception of a transient cessation of the flow

at about t=500 msec, the mean forward velocity is about the same in systole
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and diastole which is also in contrast to the behavior noted for the other

two branches. Velocity profiles for the circumflex branch were constructed

from the measured waveforms and are shown plotted in Figure 8. The. vessel

diameter for this example was estimated from the peak forward profile to

be 4.2 mm and was directly measured post-mortem as about 2 mm. Since the

length of the PUDVM sample volume is not small compared to the diameter of

this circumflex branch, the computed profiles may differ appreciably from

the true velocity distributions.

DISCUSSION

The blood velocity waveforms and profiles described above are repre-

sentative of the results obtained over the entire course of this study.

Except for the low frequency systolic fluctuations, the general character-

istics of the centerline velocities measured with the PUDVM are similar to

phasic flow waves recorded in the coronary arteries of dogs using electro-

magnetic or contiuous wue Dzppler fl ......... [p16]. Reynol numbers

based on the peak centerline velocity normally ranged from about 300 to

600 in the major branches of the left coronary circuit although one flow

was observed for which the peak Reynolds number reached 1500 (cf. Fig. 1).

The unsteadiness parameter for the heart frequency was usually less than

4 which indicates that profiles corresponding to the mean phasic velocities

should be described by well developed boundary layer flows. On the other

hand, rapidly fluctuating local flows arising from the longitudinal vibra-

tions of the coronary branches were characterized by a values of 5 to 10

or more and relatively flat velocity profiles would be expected for these
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flows. The calculated profiles illustrated above appear to support these

predictions. In general, the time varying profiles throughout systole

suggest that a plug-like flow occurs.during the period of most intense

velocity oscillations whereas more fully developed profiles appear later

in the flow cycle.

Velocity disturbances which would be indicative of transition or tur-

bulent flow cannot be detected on the velocity records because of the

limited frequency response of the PUDVM. Nerem and Seed [17] measured

velocities with a hot film anemometer in the ascending aorta of dogs and

found that flow disturbances generally occurred for values of a>6 whenever

the peak Reynolds number exceeded about 150a. Even though the time his-

tories of the coronary and aortic flow pulse are markedly dissimilar only

entrance flow exists in either circuit. Furthermore, disturbances created

during the ejection of blood from the left ventricle could, under the proper

conditions, be transported into the coronary vessels as well as into the

aorta. Comparing Nerem's criteria for tne existence of flow disturbances

with the Reynolds numbers and frequency parameters corresponding to the

coronary flows described here leads to the conclusion that velocity dis-

turbances most probably would not be found in the major branches of the

left coronary artery.

The most critical question regarding pulsed Doppler velocity measure-

ments is instrument resolution. Since the PUDVM estimates velocity within

.a finite sample region it is clear that the size of the sample region rela-

tive to the vessel dimensions ultimately determines the resolution and

accuracy of the measurements. A velocity profile obtained with the PUDVM
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is described analytically by a convolution of the sample region with the

actual velocity distribution [18]. The measured profile is broadened and

flattened by this convolution process and may also be distorted as a re-

sult of signal attenuation. In addition, since the PUDVM does not detect

zero velocity, the effective size of the sample region changes as it is

scanned across a vessel wall thereby introducing an additional boundary

error in the velocity estimate. In vessels which are sufficiently large

compared to the sample function the measured velocity profile may closely

approximate the true distribution. The NASA-PUDVM was used to estimate the

velocity profile for fully developed Poiseuille flow (Re = 1500) in a dialy-

sis tube 7.2 cm in diameter. Figure 9 compares the measured and predicted

profiles and indicates a slight broadening of the measured profile at the

far wall. The ultrasound beam passed through the center of the tube and

was inclined at an angle of 60 degrees to the flow axis. The scan diam-

eter estimated from the measured profile is in error by about 10%. The

convolution and -urdary ar s "V rrrrsy lmit thp accuracy of profiles

measured with the PUDVM in vessels with diameters less than about one-fourth

the length of the sample function [19]. For the PUDVM used in these studies,

calculated velocity profiles are expected to differ significantly in shape

from the true profiles in vessels less than 4 to 6 mm in diameter.

Although the PUDVM profiles may be distorted, it is possible to properly

account for the boundary error and compute the true time varying velocity

gradients at the wall. This calculation requires that one know a priori

the actual location of the wall on the estimated profile and this can be

obtained, for example, with an ultrasonic pulse-echo imaging system.
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Although the correction factor does depend upon the shape of the sample

region and the true gradients, the measured profiles, in general, under-

estimate the velocity gradient at the wall by about one-half. From the

coronary profiles obtained in ponies the calculated maximum shear rates

were typically 400 to 600- . In one instance (Fig. 2) the peak shear rate

reached about 3000 sec - . The corresponding wall shear stresses are well

below the acute yield stress for endothelial cells of about 380 dynes/cm2

suggested by Fry [1].

Perhaps the most interesting features of the coronary velocity patterns

reported here are the marked fluctuations which regularly occur during

systole. Measurements of coronary blood flow in dogs and man usingelectro-

magnetic or CW Doppler flowmeters [13-16,20] do not indicate the presence

of similar oscillations. Furthermore, the horse is not usually used for

studies of cardiovascular mechanics and there is no information in the

literature pertaining to either normal or abnormal coronary hemodynamic

patterns in thiS specijs. A suggeL d uvye, these 5 to 10 Hz velocity

fluctuations appear to be generated as the artery vibrates along its axis.

The velocity signal then represents the superposition of the mean coronary

velocity with a locally induced velocity component associated with the

motion of the vessel. Relative to thetransducer which is fixed to the

vessel, the induced flow has the characteristics of a piston-driven oscil-

lating flow in a rigid pipe where the relative velocity at the wall is

zero and the maximum velocity fluctuations occur in the center of the

vessel. This behavior is readily apparent from the measured velocity

waveforms in Figures 3, 5, and 7. Momentarily occluding the vessel
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immediately adjacent to the transducer eliminated the induced velocity

(and the mean velocity also) as would be expected. In this case, the

vessel and blood must execute essentially the same motion in response to

the forced oscillation and no relative velocities develop. This situation

would be similar to a vibrating fluid-filled tube which is closed at both

ends. Other possible explanations for the genesis of these fluctuations

such as relative motion between the cuff and the vessel or twisting of

the flow cuff and vessel cannot be substantiated from the velocity records

or by direct visual observation. One might speculate that the occurrence

of these low frequency systolic vibrations is a species dependent phenomena.

It could be argued that in the dog, for example, analogous stress waves,

if generated, would be less intense and occur at a higher frequency com-

pared to the horse because of the dog's higher heart rate and lower cardiac

output. Furthermore, high frequency vibrations would be more rapidly damped

and perhaps not easily detected. Preliminary measurements obtained in our

laboratory of coronary velocity waves in a conscious intact horse also

indicate the presence of local flow fluctuations in the range of 5 to 10 Hz.

CONCLUSION

These results represent a first step toward quantifying the normal

hemodynamic patterns in coronary arteries. In the equine species, the

measured velocity waveforms are accented by low frequency fluctuations

apparently arising from the motion of the myocardial surface. The ampli-

tude of the induced velocity variation appears to depend upon the orienta-

tion of the vessel on the heart and may also vary during the cardiac cycle.
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The significance of these oscillations relative to the development of

coronary artery disease or to the perfusion of the myocardium cannot be

evaluated on the basis of these initial observations. It is clear, how-

ever, that these unexpected local velqcity patterns will greatly influence

the stability of the flow and the development of secondary and separated

flows and will have an important bearing on the consequences of cyclic

hydrodynamic forces.
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CAPTIONS

Figure 1. Computer plot of one cycle of the average 
centerline velocity

waveform measured in the descending branch of the left coronary

artery of a pony. The beginning of the cycle coincides with

the R-wave of the electrocardiogram.

Figure 2. Calculated time varying velocity profiles in 
the horse LAD

coronary artery for 18 equally spaced time intervals during an

average heart cycle. (a) The profile for t=O sec is at the

bottom and subsequent profiles are plotted sequentially 
with a

10 cm/sec offset. The profile in the cycle having the maximum

average forward velocity is at the top. (b) Remaining profiles

beginning with the uppermost curve. The final profile of the

heart cycle is at the bottom.

Figure 3. Velocity waveforms measured in the main branch 
of the coronary

artery from the center of the vessel to the far wall. 
Near

wall to centieriine velocitiue wer aso mapped. Note the marked

6 Hz fluctuations during the first half of the cycle which may

be caused by vibrations of the artery.

Figure 4. Velocity profiles in the main branch constructed 
from the wave-

forms given in Figure 3. Profiles are offset by 2 cm/sec for

clarity. (a) Profiles from t=0O to the time of peak forward

flow. (b) Subsequent profiles from peak forward flow to the

end of the heart cycle.

Figure 5. Velocity patterns across the near half of the descending 
branch

of the coronary artery. Corresponding velocity profiles are

shown in Figure 6.
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Figure 6. (a) and (b). Estimated velocity profiles in the descending

branch. The profiles during the early part of the cycle appear

flattened compared to the later profiles which are more fully

developed.

Figure 7. Average velocity waveforms in the circumflex branch. 
The center-

line velocity oscillations during systole are only about half

the magnitude of the corresponding variations measured in the

main and descendina branches.

Figure 8. (a) and (b). Velocity profiles for the circumflex branch. Due

to the limited resolution of the PUDVM profiles calculated in

small vessels will be distorted especially near the walls and

in regions with high velocity gradients.

Figure 9. Velocity profile measured with the PUDVM compared to the pre-

dicted profile for Poiseuille flow in a 7.2 mm diameter tube.

The ultrasound beam was inciinea at 60 de to the tube axis.
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